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Abstract 

Patterson and Fourier methods applied to one- 
dimensionally modulated structures in the (3+ 1)- 
dimensional space R3+1 can be very helpful tools 
for the calculation of starting parameters of the atomic 
modulation functions. The characteristics of the 
(3+ 1)-dimensional Patterson function [(3 + 1)-PF] 
are discussed for some typical modulation waves from 
a geometrical point of view as well as with the aid of 
known modulated phases. The influence of series 
termination errors, resulting from incomplete data 
sets, is demonstrated. The (3+I ) -PF ,  in any case, 
yields sufficient basic information even if first-order 
satellites only are accessible. Of course, it is necessary 
to include higher orders if one wants to learn some- 
thing about the shape of the modulation wave. A 
comparison is made with the Patterson methods used 
for the solution of modulated structures until now, 
and it is shown that they are special cases of the 
(3+ 1)-PF. Some applications are given for Fourier 
methods in R3+1, for example, to detect fluctuations 
of the phase or the amplitude of the modulation wave. 

1. Introduction 

In recent years an increasing number of commensur- 
ately and incommensurately modulated structures has 
been determined. In general the solution of the 
average structure presents no difficulties, but it can 
be problematical to find workable starting parameters 
for the refinement of the atomic modulation func- 
tions. Direct methods are available for superstruc- 
tures (cf. e.g. B/Shme, 1982) but there is no incom- 
mensurately modulated structure known to the author 
which has been solved using them, and the usual 
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Patterson methods are hardly interpretable for more 
complicated cases. Consequently, most of the modu- 
lated structures have been solved based on model 
considerations or in a rather straightforward way (cf. 
e.g. Horst, Tagai, Korekawa & Jagodzinski, 1981; 
Yamamoto, Nakazawa, Kitamura & Morimoto, 1984; 
Steurer & Adlhart, 1983a, b). However, there have 
been many attempts to apply Patterson techniques to 
get information independent of models. The most 
frequently used way is to describe the incommensur- 
ate modulation in a commensurate supercell, approxi- 
mately, and to calculate the 'partial '  or 'difference' 
Patterson synthesis using the superstructure reflec- 
tions alone (cf. e.g. Frueh, 1953; Tak6uchi, 1972; 
B6hm, 1978; Tomeoka & Ohmasa, 1982). As a result 
the Patterson map of the 'complementary'  structure, 
the difference between the real modulated structure 
and the average structure, is obtained. 

Another method has been derived by Toman & 
Frueh (1973a, b) by calculating the Patterson syn- 
thesis in the subcell using 'one set' of satellite reflec- 
tions. The 'plus and minus" difference Patterson func- 
tion (McConnell & Heine, 1984) is a similar approach 
and has been used primarily to obtain symmetry 
information. A detailed discussion of all these 
methods will be given in § 5 of this paper. The purpose 
of this study is to discuss the properties of the 
(3+ 1)-PF for some fundamental modulation func- 
tions and to give an aid to the application of this 
method in practical structure determination. For the 
sake of a clear representation plane modulation waves 
with equal amplitudes are investigated in the first 
place, but the (3 + 1)-PF is interpretable in more gen- 
eral cases as well. Naturally, in the case of asymmetric 
functions of very different shape the definition of a 
phase relation between two modulation waves will 
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become dubious and the (3 + 1)-PF can give informa- 
tion about amplitude sums or differences only. In the 
following, we will deal with sinusoidal modulation 
which can be used as a first approximation to all 
modulation functions, and with rectangular and 
triangular functions for the description of micro- 
domain structures or cases of microtwinning. 

2. The (3 + 1)-dimensional Patterson function 

According to the superspace theory of de Wolff 
(1974), one-dimensionally modulated structures can 
be described in a fictitious (3 + 1)-dimensional lattice 
R3+ 1. By this means the translational symmetry in the 
direction of the propagation of the modulation wave, 
lost in the three-dimensional space R3, is restored. 
The (3 + 1)-dimensional elementary cell contains the 
atoms as continuous strings in the extra dimension. 
The actual state of the atoms in a particular cell of 
the crystal then corresponds to a section in R3+ 1. 

The Fourier transform of the intensities at the 
reciprocal-lattice points H = ha* + kb* + Ic* + mq 
with the satellite vector q =  aa*+/3b*+ yc* (h, k, l, 
m integer, a, r ,  y at least one irrational and < 1) can 
be written in analogy to the three-dimensional 
expression ( cf International Tables for X-ray Crystal- 
lography, 1959) 

P(UVWT) = 1/V~ E E E E Ink~m 
h k l m  

xcos27r(hU+kV+lW+mT) (2.1) 

and equals the function 

P(UVWT) 

1 1 1 1  

= V~ ~ ~ ~ ~ p(xyzt) 
0 0 0 0  

x p ( x +  U,y+ V, z+ W, t+ T) dx dy dz dt 
(2.2) 

[ Vc is the volume of the fundamental cell in R3 and 
p(xyzt) is the electron density in R3+~ (Yamamoto, 
1982)]. The (3 + 1)-PF represents the vector function 
between the string-like atoms ('string atoms') of the 
(3 + 1)-dimensional elementary cell. It is centrosym- 
metric and a continuous function in the extra 
dimension. If the (3+ 1)-PF is projected on T the 
Patterson map of the average structure is obtained. 
Therefore, if the Patterson map of the average struc- 
ture shows well resolved peaks for a particular inter- 
action it might be promising to investigate the 
(3+ 1)-PF around this region. In the following, the 
(3 + 1)-PF of such a single 'string atom'- 'string atom' 
interaction will always be discussed. 

Fig. 1 shows the (1 + 1)-dimensional cell with two 
'string atoms' generated by a symmetric rectangular 
displacive modulation of a one-dimensional structure 
with two point atoms at xl and x=. The electron density 

in the cell is given by 

{ i  f°r x = x l + A  O<t<½ 
pl(xt)= X = X l - A  ½ < t < l  (2.3) 

otherwise 

and the analogous expression for the atom at x2. 
P(UT) consists of three triangular functions of T 

at the positions /-/1 = (x2-  Xl) +2A, U2 = (x2-  xl) and 
U3=(x2-x l ) -2A as can be calculated using (2.2) 
or is easily derived from the picture. The magnitude 
of P(UT) is proportional to the sum over all 
equivalent vectors between the 'string atoms' with a 
particular T =  At (compare the areas F~ and F2 in 
Fig. 1, for example). If the 'string atoms' are shifted 
by T = At against each other then the maximum area 
and therewith the maximum peak of P(UT) is 
obtained for the vector set with T = At. Thus, from 
the position of the 'bordering' peaks at U~ and U3 
one can calculate the amplitude A and from the value 
of T of the maximum peak the phase difference can 
be derived. 

Generally it can be said, and this is valid for all 
possible displacive and substitutional modulations, 
that the ( 3 + I ) - P F  for an interaction between two 
'string atoms' differing in phase only has its absolute 
maximum at R = Arkk, (R is the vector with the com- 
ponents U, V, W and Arkk, the vector between the 
atoms k, k' of the basic structure) and T = A~0kk, (A~Okk, 
is the phase difference between the modulation func- 
tions of the atoms k, k'). In the case of displacive 
modulation the 'bordering' peaks (i. e. the vectors with 
the largest and smallest IRI) are at R = 
A rkk, + (Ak + Ak,) (Ak is the amplitude of the modula- 
tion wave of the atom k) and T =  A~Okk,+ ~r. These 
peaks can be found, e.g. at U = + 0 . 1 a  and T = 0 . 5  
in Figs. 2(b) and 2(c). Consequently, from the posi- 
tion of the absolute maximum of the (3 + 1)-PF of a 
single interaction one can derive the phase difference 
A~0kk, and from the position of the 'bordering' peaks 
the sum of the amplitudes (Ak + Ak'). 

A more complicated Patterson map is obtained in 
the case of displacive modulation waves of the same 
shape but very different amplitudes (for practical 
cases differing at least by a factor two, considering 
average resolution). Then the position of the absolute 

Fig. 1. A schematic representation of a (1 + 1)-dimensional elemen- 
tary cell containing two rectangularly modulated point atoms as 
continuous strings in the extra dimension t. The number of 
equivalent vectors between the 'string atoms' with a particular 
T= At is proportional to the hatched areas F~ (T= 0) and F2 
(T = At), for example. 
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maximum of the (3 + 1)-PF of an interaction of two 
non-rectangular 'string atoms' need no longer be a 
correct measure for A~Okk'. The phase difference has 
to be derived from the position of the 'bordering' 
peaks at R = A r k k , + ( A k + A k , )  which are for non- 
rectangular displacive waves at T = A~Okk'+ 7r in any 
case. 

Conversely, we can conclude that if we do not find 
the absolute maximum at R = Arkk,, which is known 
from the average structure, then the 'string atoms' 
involved have very different amplitudes Ak, Ak'. In 
the extreme case with one amplitude equal to zero a 
(3-t-1)-PF independent of T is obtained and only a 
rough estimate of the amplitude may be possible. 

In order to avoid the evaluation of the (3 + 1)-PF 
in the complicated cases mentioned above, it may be 
advisable to calculate the (3 + 1)-PF for interactions 
of atoms being symmetrically equivalent preferably 
in R3+ 1. This will be possible in all superspace groups 
but PPI (aft'y) and reduces the problem to the case 
of 'string atoms' with equal amplitudes and shape (at 
least for the first harmonic), allowing the determina- 
tion of the amplitude. If there is a symmetry element 
in the superspace group turning q into - q  then the 
phase ~0k' of the modulation function of the atom k', 
generated by this symmetry operation from the func- 
tion of the atom k with the phase ~0k, will be equal 
to --q~k and A ~ k  k' = 2¢Pk. The phase ~0 k can be deter- 
mined from this with an uncertainty of 7r. Hence, if 
one uses the (3+I ) -PF  in this way one obtains the 
simply evaluable maps, in principle, shown in Fig. 2. jT,-. 

".~'o "/o 

/o ~ -*o • 
• / 0 -~ 

(a) (b) 

--.. . o  . o  

" / o  
,. "o • 41 ? 

(c) (d) 
Fig. 2. The (3+I)-PF for (a) asymmetric (ratio 0.6:0.4) rec- 

tangular, (b) sinusoidal, (c) triangular displacive and (d) 
sinusoidal substitutional modulation. The calculations were per- 
formed for two point atoms modulated by plane waves with 
equal amplitudes (A~ = 0.05a) and phases (~o~, = 0). The absolute 
maximum is at R=Arkk, (i.e. U=0 in these plots) and T= 
A~Okk.-~ O, the 'bordering' peaks are at R = Arkk, + ( A ~k + A~,) (i.e. 
U= ±0.1) and T=A~kk,-I-Tr for (b) and (c). The length of the 
plateau parallel to the UT plane in (a) corresponds to the degree 
of asymmetry (AT = 0.6- 0.4 = 0.2). 

Fig. 2(a) illustrates the case of an asymmetrically 
rectangularly modulated structure. The (3 + 1)-PF is 
a trapezoidal function of T. The width of the plateau 
parallel to the UT plane is proportional to the degree 
of asymmetry of the modulation function and 
becomes zero for symmetric rectangular waves. The 
Patterson maps for sinusoidal and triangular dis- 
placive modulation are given in Figs. 2(b) and 2(c). 
The maps look very similar and might not be distin- 
guishable in practice. 

Quite a different picture is obtained for the (3 + 1)- 
PF of sinusoidal substitutional modulation (Fig. 2d). 
The ratio of the maximum to the minimum of 
P(UVWT) is a measure of the amplitudes of the 
modulation functions involved. In the case of asym- 
metric rectangular substitutional modulation, 
P(UVWT) is a trapezoidal function of T again. 

The vector images discussed above are calculated 
for point atoms and have to be convoluted with func- 
tions considering the size and the vibrations of the 
atoms as well as series termination effects to get a 
more realistic picture. However, from Fig. 2 can be 
learnt that, in principle, displacive and substitutional 
modulation can be distinguished easily and with very 
good data sets (higher-order satellites), both rec- 
tangular and sinusoidal. It might even be possible to 
determine the extent of asymmetry of a rectangular 
wave. 

3. Series termination errors 

In most cases, few orders of satellite reflections are 
measurable only because of fluctuations of the phase, 
amplitude or periodicity of the modulation wave. In 
addition, the principal distribution of satellite 
intensities in reciprocal space plays an important role. 
For example, in the case of rectangular modulation 
high orders of satellites can be found around all main 
reflections, in principle, whereas they appear for 
sinusoidal modulation around highly indexed ones 
only. This is a consequence of the fact that the struc- 
ture factor of an ruth-order satellite is proportional 
to a trigonometric function (times l / m )  in the first 
case and to the mth-order Bessel function in the 
second one. Termination effects will therefore play 
an important role in the practical evaluation of the 
(3+I ) -PF  or ( 3 + I ) - F F  (i.e. Fourier function). The 
Fourier transform of a finite set of structure factors 
or intensities is equal to the convolution of the true 
electron density or the true vector function with the 
Fourier transform of the (3 + 1)-dimensional function 
which gives the selection rule for the inclusion of the 
reflections. Thus, if we have a data set collected in 
the usual manner, we have a limiting sphere for the 
main reflections and, for the satellites, a much smaller 
limiting box in the extra dimension, defined by 

10 f°rmmin<-m<-mmax 
f ( m )  = otherwise. (3.1) 
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Its Fourier transform is then 

o o  

F ( T ) =  ~ f (m)  exp (27rimT) dm 
- - o O  

m m a x  

= Y. exp (2"trimT). (3.2) 
m m i n  

If first-order satellites only have been measured we 
get, excluding the main reflections, 

F(T) = 2 cos 2¢rT. (3.3) 

If we assume phase fluctuations with a Gaussian 
distribution, equal for all atoms, then the limiting 
function can be written as f (m)=exp  (-n/2m2(q,2)) 
(cf Steurer & Adlhart, 1983a) and its Fourier trans- 
form is 

F(T)=[2~/(n(@2))] ~/2 exp [-2~2T2/(n(~b2))] (3.4) 

with n = 1 for the (3+ 1)-FF and n = 2 for the (3+ 1)- 
PF. Accordingly, phase fluctuations will cause a 
broadening of the functions along T like the Debye- 
Waller factor does in R 3. 

Fig. 3 demonstrates the effect of series termination 
by convolution of the (3+ I ) -PF  of Fig. 2(b) with 
(3.3). The main characteristics are not influenced 
thereby but the information about the shape of the 
modulation functions, being included in the shape of 
P(UVWT) as a function of T, has been lost. 

In Fig. 4 an example computed with a test structure 
is given. In addition to series termination effects the 
influence of the atomic size and of thermal vibrations 
can be studied. The real existing structure of GeS 
(Bissert & Hesse, 1978) has been taken as basic struc- 
ture and a sinusoidal modulation has been simulated 

P11y(OOy), q=0.3c*,  AG~ = (superspace group ~m~ x 
O.02a, A~=O.O2a, ~pG~=0, q~s=0"8A). The (3+I ) -  
DPF [i.e. (3 + 1)-dimensional difference Patterson 
function, calculated using satellite reflections only] 
of a Ge-S interaction is illustrated in Fig. 4(a). The 
comparison of this picture with that of Fig. 3 shows 
the broadening of the peaks parallel to U due to the 

. ' % , ~  

°,'0%" 

Fig. 3. The ( 3 + I ) - P F  for sinusoidal modulation (cf Fig. 2b) 
convoluted with equation (3.3) to simulate a Patterson synthesis 
calculated by the first-order satellites alone. The position of  the 
absolute maximum ( U  = 0, T = 0) and of  the 'bordering' peaks 
( U = + 0.1, T = 0.5) remains unaltered. 

size and the thermal vibrations of the atoms involved. 
However, it is easy to determine the phase difference 
from the position of the absolute maximum at T = 0.8 
and the amplitudes from the 'bordering' peaks at 
T=0 .3 .  

A practical example, calculated with the intensities 
of the known modulated phase of a-bis(N-methyl- 
salicylideneaminato)nickel(II) (Steurer & Adlhart, 
1983a) is represented in Fig. 5. The (3 + 1)-DPF for 
the interaction between the atoms Ni and C(8) allows 
a good estimation of the sum of amplitudes [A~i+ 
A~(8)=O'llc versus 0.095 from the structure 
refinement] and of the phase difference [Aq~Ni,C(8 ) = 
0"04 versus 0.08]. Since the superspace group of this 

P Yli (a00) has symmetry elements turning compound ~ba2 

U 
0 .25 .50 

o T . . . .  _ 

." " - I  " ~  / " 

121 .~S j ' ,  -. ~ ( . , , ,~ .  ': • 

.o  

" . ' o  -"$" .3 
(a) (b) 

Fig. 4. (a) The ( 3 + I ) - D P F  of  a Ge-S interaction of  the test 
structure calculated from the first-order satellite reflections alone. 
The absolute maximum is at U = 0  and T =  A~G~,S=0.8 , the 
'bordering' peaks can be found at U = +0.08a [corresponding 
to R = r G ~ , s + ( A ~ + A ~ )  on the chosen scale] and T=0-3 .  (b) 
The 'difference Patterson synthesis' of  the same structure rep- 
resented in a section of  the first three subcells of  a tenfold 
superstructure ( ~  3)t). The sites marked by crosses denote the 
Ge-S interaction used in (a). 

Fig. 5. The ( 3 + I ) - D P F  for the interaction of  the atoms Ni and 
C(8) of  the incommensurately modulated phase of  a -b i s (N-  
methylsalicylideneaminato)nickel(II) calculated with the first- 
and second-order satellites. The absolute maximum is at W = 0 
and T = 0.04. The 'bordering' peaks are at W --- + 0.11 c. 
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q into - q  and the Ni atom occupies a special position 
with the constraint ¢PNi ---- 0 the phase of C(8) can be 
determined to be ¢c(8)=0.04 or 0.04+ yr. With the 
same accuracy the amplitude sums and phase 
differences of the interactions of the Ni atom with all 
other non-hydrogen atoms of this structure could be 
derived. 

The inspection of the Patterson maps of Figs. 2 to 
5 shows that for average resolution no discrimination 
will be possible between the different shapes of modu- 
lation functions. But, in any case, displacive and 
substitutional modulation remain distinguishable. It 
is advisable to calculate the (3+ I ) -DPF  instead of 
the (3+ I ) -PF  to get a better resolution of the 
maximum and the 'bordering' peaks, especially, if the 
displacements of the modulation wave are small com- 
pared with the atomic diameters. 

4. General sinusoidal modulation 

In this case the displacive modulation is represented 
by the plane waves (atom k in cell l) 

X X X 
U k l  = Ak s i n  2"n'(qrkt + ¢Pk) ,  

u~t -- A~ sin 27r(qrkl + ¢p~) (4.1) 
z z 

Uk! = Ak sin 2zr(qrkt + ¢p~) 

and the substitutional one by 

Pkt---- 1 + ASk sin 27r(qrkt + tp ~,). (4.2) 

The (3+ 1)-PF and the (3+ 1)-FF can be represented 
by their component functions parallel to U, V and 
W. These functions are calculated from the respective 
plane components (each one consisting of displacive 
and substitutional parts) alone. Thus, it might be 
sufficient to analyse the sections P(UVoWoT),  
P(UoVWoT) and P(UoVoWT) provided that the 
amplitudes are small compared with the atomic 
diameters. Otherwise, it will be necessary to study 
the projections of the (3 + 1)-PF or (3 + 1)-FF that 
one is interested in, on to the planes (UT), (VT) ,  
(WT) and, to detect substitutional modulation as well 
as displacive, on to the line T. The bounded projection 
(cf. International Tables for X-ray Crystallography, 
1959) for the limits U~, U2 and V~, V2, for example, 
is 

I-I 2 V z 

P u v ( W T ) =  V d A  ~ ~ P ( U V W T ) d U d V  (4.3) 
Ut Vt 

where A is the length of the unit cell in the projection. 
On substituting (2.1) in (4.3) and integrating twice 
we obtain 

P u v ( W T )  = Vo/A E Ihklm 
h k l m  

x [cos 27r( lW + mT)(ShSk -- ChCk) 

+s in27r( lW+ mT)(ChSk + ShCk)] (4.4) 

Ch = { lo/ 2 7rh ( cos 2"rrh U2 - cos 2 7rh U1) 

1/27rh(sin 27rhU2- sin 27rhUl) 
Sh= ( U2- U1) 

f o r h ~ 0  
f o r h = 0  

f o r h # 0  
for h =0  

and analogously for the other indices k, I. The boun- 
daries have to be chosen carefully to be sure that as 
much as possible is enclosed of the function of interest 
and as little as possible of the adjacent functions. 

For the bounded projection on to T one has to 
integrate once more to obtain the expression 

Puvw( T) = Vc E lhklm 
h k l m  

x[cos 27rmT( ShSkSt- ShCkCz - ChSkCt 

- ChCkSt)-sin 27rrnT(ChCkCt 

-- ChSkS, - Sh CkS, - ShSk C, ) ]. (4.5) 

This projection is only promising if the termination 
errors are negligible. 

5. Comparison with other Patterson methods 

'Partial' or "difference Patterson" ( DPF) 

The main disadvantage of this technique is that one 
gets information from a discrete vector function only. 
This results from the approximation of the incom- 
mensurate structure by a commensurate one. In the 
incommensurate case any site of a modulation wave 
will be occupied by an atom anywhere in the crystal 
whereas in the n-fold supercell the wave is represen- 
ted by n atoms only. By analogy, the n subcells of 
the DPF represent n sections of the continuous 
(3-t-1)-DPF at equidistant values of T. Hence, the 
realizable information will be small in more compli- 
cated cases. This is illustrated in Fig. 4 where a 
'difference Patterson' map of the GeS test structure 
is compared with the (3 + 1)-DPF. The Ge-S interac- 
tion vector of Fig. 4(a) is marked by crosses in the 
different subcells of the map. Beside the crosses the 
'bordering' peaks of the (3 + 1)-DPF are visible. The 
crosses at W=0.06,  0.16 and 0-26 correspond to 
sections of the ( 3 + I ) - D P F  at T--0.8,  0.5 and 0.2, 
approximately. 

'TF-Patterson' (Toman & Frueh, 1973a, b) 

This method can be understood as a (3 + 1)-PF with 
heavy series termination errors computed in the 
fundamental cell. A Patterson map is calculated using 
one 'set' of satellite reflections only (order +m, for 
example) with the formula 

P ( R ) = ( 1 / V c )  ~., I~  m exp[ -2 .n ' iR(n+mq)] .  (5.1) 
H 
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The term 

qR = (xa  + yb + zc) ( t~ a* + fl b* + 7c*) 

= o~x + fly + 7z (5.2) 

corresponds to a representation of the extra 
dimension T in coordinates of R 3. Equation (5.1), 
then, can be interpreted as a partial (T is calculated 
for qR only) ( 3 + I ) - P F  convoluted with F ( T ) =  
exp (2,n'imT), the Fourier transform of the limiting 
box. The 'TF-Patterson' is a complex function and, 
if some preconditions are fulfilled (not too different 
amplitudes, for example), the maximum of the real 
part at R=Arkk, has the value cos 2"tr(qR+A~Pkk,) 
whereas it will be sin 27r(qR + A~kk') for the imaginary 
one. From the ratio of both the value of A~kk' can be 
evaluated. 

'Plus and minus DPF' 

This kind of Patterson synthesis is performed in the 
fundamental cell or in a twofold supercell depending 
on the way the intensities of one satellite pair have 
been shrunk on the reciprocal-lattice vector H or 
H + ½. The functions used thereby, 

P+(R) = ~ (I  +m + I -m) cos 2~'HR 
n (5.3) 

P-(R)  = ~ (I  +m-  I -m) sin 2~'HR, 
H 

can be derived from the (3 + 1)-PF if (2.1) is written 
as 

co 

P(RT)=(1 /Vc)Y ,  ~, [ ( i + m + i - m )  
H m = l  

× cos 2~HR cos 2"n'mT 

- ( I  +m - I -m) sin 27rHR sin 27rmT] (5.4) 

(excluding the main reflections). Setting T = 0, one 
obtains P+ and, for T =  3~r/2, P -  results. The 'plus 
and minus DPF'  corresponds to sections of the 
(3+ 1)-DPF, therefore. Similar information can be 
obtained as in the case of the 'TF-Patterson'. 

6. The application of the (3 + 1)-dimensional Fourier 
function 

The (3 + 1)-FF was first studied by Yamamoto (1982) 
but has not been used as an aid for the solution of 
modulated structures until now. It can be calculated 
by the formula 

p ( X Y Z T )  = 1/V~ E E E ~,, Fhklm 
h k  l m  

x exp [-2~'i(hX + k Y +  IZ + mT)]. 
(6.1) 

The ( 3 + I ) - F F  and the ( 3 + I ) - D F F  [difference 

/ IcTobs ETcalc Fourier function with ~. hklm--" hklm/ as Fourier 
coefficients] can similarly be used in the course of 
the refinement of the modulated structure as their 
three-dimensional analogues in conventional struc- 
ture analysis. Incorrectly calculated modulation pa- 
rameters could be detected in this way, and calcula- 
tion effects could be distinguished from real structural 
properties, for example, whether the modulation is a 
plane wave (with ~x = ~y = ~z) or not. 

Another possibility provided that higher-order 
satellites are included is finding indications to the 
existence of fluctuations of the phase or the amplitude 
of the modulation wave (cf. Adlhart, 1982) if they are 
of the order of the Debye-Waller factor. 

Both the fluctuations cause a spatially modulated 
contribution to the modulation (with a wave vector 
2q) which has a phase shift of ~r/2 in the case of 
phase fluctuation. Thus, in this case, the (3 + 1)-DFF 
would show positive regions along T around the 
nodal points, whereas in the case of amplitude fluctu- 
ations the positive difference density could be found 
around both the extremal values with a distribution 
parallel to Ak. 

If one finds positive and negative regions parallel 
to Ak separated by ~ from each other it could be 
caused by the first harmonic of the modulated tem- 
perature factor (cf. Yamamoto, 1982). 

7. Concluding remarks 

Following the determination of the average structure, 
the assignment of the superspace group (cf. de Wolff, 
Janssen & Janner, 1981) and the qualitative analysis 
of the diffraction pattern (cf. Jagodzinski, 1984), the 
(3+ 1)-PF can be very helpful for the evaluation of 
starting parameters for the structure refinement. It 
will be promising in all cases showing well resolved 
peaks in the Patterson maps of the average structure. 
In the initial stages of the refinements the (3 + 1)-FF 
and (3 + 1)-DFF can be a valuable aid to obtain the 
modulation parameters for the atoms which have not 
been considered by the Patterson syntheses and, in 
general, to control the results of the refinements as 
in the classical structure analysis. A structure determi- 
nation of the modulated structure of an andesine A n 3 8  

has been performed successfully using the methods 
mentioned above (Steurer & Jagodzinski, 1986). 
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Abstract 

A method is presented for the calculation of analytical 
coefficients for scattering factors at mixed atom sites. 
The importance of the concept of compatible 
coefficients for the separate atoms is stressed and 
examples of the problems that can arise when trying 
to find coefficients for mixed atom sites are given. A 
computer program and its use are described. Two 
errors in International Tables for X-ray Crystallogra- 
phy [(1974). Vol. IV. Birmingham: Kynoch Press. 
(Present distributor D. Reidel, Dordrecht)] are noted, 
for R u  4+ and Bi 5÷, for which revised coefficients are 
given. For N, O- and Sr 2÷ analytical coefficients are 
given which fit the tabulated scattering factors sig- 
nificantly better than the coefficients in International 
Tables for X-ray Crystallography. 

I. Introduction 

The atomic scattering factor is used to describe the 
coherent scattering of X-rays by an atom. It is a 
function of the electron density of the atom and the 
finite size of this density causes the scattering factor 
to depend upon the Bragg angle 0 and the wavelength 
of the X-rays ,X through the parameter x =sin0/,X. 
The electron density of an atom is known only by 
theoretical calculation so the scattering factor is 
approximate and depends upon the reliability of the 
theory; various calculations have been used and the 
resulting factors tabulated for a range of x values 
between 0 and 2 (International Tables for X-ray Crys- 
tallography, 1974, pp. 82-98). 

Tables of such values were used in older X-ray 
computer programs, scattering factors for non-tabu- 
lated x values being obtained by linear interpolation. 
More recent programs use an analytical expression 
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of the form: 
4 

fc(x) = ~ a, exp[-b~x:]+c, (1) 
i = 1  

with values o f a ( = a i ,  i = l  to 4), b (=  bi, i = l t o 4 )  
and c being tabulated for different atoms (Inter- 
national Tables foF X-ray Crystallography, 1974, pp. 
99-101). The a, b and c for a particular atom are 
obtained by minimizing the difference between fc(x), 
the value calculated from such an expression, and 
f(x), the tabulated value. The statistic used here to 
obtain this best fit is 

n 

X 2= ~ [f(xi)-f~(x,)]2/(n-9), 
i = l  

where n is the number of x values used in the fitting, 
those used here being x~ = 0.0 (0.01) 0.20 (0-02) 0.50, 
0.55, 0.60, 0.65, 0.70 (0-10) 2.00, a maximum of 53 
values, although for some cases f(x) is quoted for 
only the first 48 values. 

Some structures contain a mixture of two different 
atoms occupying the same type of site as, for instance, 
NO and CO groups or Na ÷ and K ÷ ions disordered 
in a lattice. In these cases an average scattering factor 
has to be used: 

f(x) = XAfA(X) + xsfs(x), (2) 

where XA is the mole fraction of atom A with scatter- 
ing factorfa and similarly for B. With tabulated values 
of fA and fs  this averaging is trivial, but with the 
analytical expression for f there is a complication in 
existing computer programs which require 
coefficients for each 'atom', regardless of whether that 
'atom' is a mixture of two atoms or not. Thus the 
problem is to express XAfA(X)+xsfs(x) in the form 
of (1). 

© 1987 International Union of Crystallography 


